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4.1.2. Edema
Clinical experience shows that TZDs induce edema in 10­

15% of patients [44 ..-46], a percentage that increases upon

Fig. 2. Tl'llnscnptional activity of specific PPAR agonists and dual PPARod'Y
agonists on human PPAR'Y (A) and PPARa (B), using chimeric protein
constructs. Cos'7 cells were transiently cotransfected with reponer pG5TKpGL3
and expression plasmids pGa14-hPPARa or 'Y. The cells were then treated for
24 h with increasing agonist concentrations. Luciferase activity was measured.
Results are expressed as percentage of transactivation relative to fenofibric acid
(100 f!M) and rosiglitazone (I f!M) as reference compounds for PPARCL and 'Y
activity, respectively.

4.1.3. Risk of congestive heart failure
Together with previous clinical trials, the PROactive study,

involving more than five thousand type 2 diabetic patients,
argues for prevention from major cardiovascular events and
deaths by TZDs. Although the study did not meet the primary
endpoint, a combination of disease-related (mortality, non-fatal
myocardial infarction, stroke and acute coronary syndrome) and
procedural (coronary and leg revascularisation and leg amputa"
tion) endpoints, PROActive met its principal secondary
endpoint, demonstrating that pioglitazone reduced the com­
bined risk of heart attacks, stroke and death by 16% in high risk
patients with type 2 diabetes [9].

Furthermore, a longitudinal study demonstrated that rosigli­
tazone prevents the development of type 2 diabetes in non-

combination treatment with insulin [47.4RJ, sometimes requir­
ing therapy discontinuation [49,50J. Although, TZDs do not
increase arterial blood pressure, the plasma volume expansion
resulting from fluid reabsorption in the kidney may lead to a
luminal pressure rise in the microvasculature which increases
the pressure gradient across the microvessel wall and the net rise
in fluid flux towards the interstitial compartment. Furthermore,
thiazolidinediones exhibit some properties of L-type calcium
channel blockers [51,521 and may cause peripheral edema by
similar mechanisms i.e. a decrease in arteriolar resistance that
induces hydrostatic pressure in the precapillary circulation.
Thus, the rise of an increased hydrostatic pressure gradient
across the microvessel wall could be at least partially res­
ponsible for an increased fluid extravasation in the interstitial
compartment and formation of peripheral edema.

Although TZDs consistently increase fluid extravasation,
another hypothesis is that TZDs modify the intrinsic fluid
permeability of the endothelial barrier. Several putative mecha­
nisms can be proposed even though no study dealing with direct
measurements of fluid flux across the endothelium has been
published. TZDs have been shown to induce, probably via
PPAR'Y activation [531, the expression of vascular endothelial
growth factor (VEGF) [54-561, formerly shown to be a vascular
permeability factor. Insulin itself has been demonstrated to
contribute to peripheral edema risk [57] and improvement of
insulin sensitivity by TZD treatment may cause edema by
promoting insulin-mediated vasodilatation [58] and/or insulin
induced endothelial permeability [59]. Nevertheless, Rennings
et ai. recently reported that the TZD-related fluid retention
was not caused by improvement of the vascular actions of
insulin, but suggested some relationships between the effects of
rosiglitazone on glucose uptake and the interstitial fluid content
[601. Finally, numerous studies have demonstrated close links
between PPAR'Y activation, the renin-angiotensin system, the
release of endothelin-l and nitric oxide in the vasculature all of
which could collectively participate to TZD-induced vasodila­
tation and increased vascular permeability [61 l-

In conclusion, although the rise in luminal pressure in the
microvessels is certainly linked to formation of peripheral
edema, several additional mechanisms have been proposed
suggesting direct actions of TZDs on the endothelium and
subsequent increases in vascular permeability.
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clinical findings. In humans, TZDs could also act on the
proximal tubules in the kidney to increase sodium reabsorption
[42J and other investigators have shown that PPAR'Y modulators
might increase the translocation of the ENaCct subunit of the
transporter to the cell surface, indirectly via transcriptional
induction of the serum and glucocorticoid regulated kinase
SGKl, in cultured human cells [43]. In conclusion, modulation
of Na+ transport activity in the urothelium appears to be
implicated in the TZD-induced Na+and fluid retention through a
PPAR'Y-dep(mdent mechanism in both humans and animals.
Nevertheless, the exact PPAR'Y-related pathways remains
controversial and additional processes might also be involved.
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Fig. 3. Main side effects associated with TZDs treatment.

diabetic patients suffering from insulin resistance and the
metabolic syndrome (DREAM study [6]). Nevertheless, in both
studies, the incidence of newly diagnosed cardiac insufficiency
was highe:r in the TZD-treated group than in the placebo group
and there remains a concern with regard to the propensity of
these drugs to cause peripheral edema and to precipitate or
exacerbate congestive heart failure (CHF) due to an increased
cardiac workload resulting from plasma volume expansion
[62]. Hence, although the TZD-associated edema is mainly
restricted to the periphery and does not directly impair left
ventricular function, subjects with class III or IV cardiac
insufficiency (according to criteria of the New York Heart
Association (NYHA)) were excluded from the clinical trials
evaluating the safety and efficacy of both rosiglitazone and
pioglitazone [331.

While several lines of evidence suggest that some patients
can develop signs and symptoms of CHF upon TZD treatment,
there appears to be no direct cardiac toxicity of'these drugs. On
the contrary, clinical studies in type 2 diabetics have demon­
strated no troublesome effects on cardiac performance and there
are even some trends toward improved function associated with
long term TZD therapy [63.64]. Similarly, in a study carried out
in diabeti(: patients with established heart failure, Tang et at. did
not observe any direct association between fluid retention and
the baseline degree ofseverity of heart failure [65]. In addition,
the incidence rate of cardiac heart failure and patient
hospitalization was found to be lower in patients treated with

a glitazone than in patients treated with insulin, when the
patients did not have congestive heart failure prior to treatment
[66].

In agreement with the lack of any direct cardiac toxicity of
TZDs, animal models consistently suggest that direct action of
PPAR-y on the heart could even be beneficial. Indeed, PPAR-y
agonists improve contractility and systolic performance
[63.67.68], enhance diastolic performance [6769] and
decrease cardiac hypertrophy independent ofloading conditions
[70 72]. Other animal studies showed that TZDs may have
beneficial effects on left ventricular remodeling and function
after ischemic injury [73,74].

Thus, although TZD-induced fluid retention might increase
the cardiac workload and subsequently increase the risk of
cardiac insufficiency, all the published animal studies as well as
clinical data to date support an overall cardioprotective effect of
TZDs in type 2 diabetic patients. However, new PPAR agonists
which do not increase fluid retention should be more
cardioprotective than actual TZDs by limiting the potential
risk of cardiac insufficiency and should be of great interest in
the prevention of type 2 diabetes in patients suffering from
insulin resistance and the metabolic syndrome.

4.2. Weight gain

Increases in body weight have been observed with all TZDs
in all animal species including rodents and non-rodents as well
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as in clinical trials [75,76]. Because body mass index is linked
to insulin resistance and cardiovascular diseases, weight gain
might be considered as a deleterious adverse event of TZD
treatment in type 2 diabetics, many of whom are already
overweight or obese. Although weight gain may occur upon
TZD therapy, a weight-management program combining a low­
calorie, low-sodium diet with education and behavior modifica­
tion has been shown to be effective in patients treated with
TZDs.

As discussed earlier, part of the weight gain may be ascribed
to TZD-induced fluid retention, but these drugs are also
associated with increased adipogenesis and fat redistribution.
Indeed, several studies have shown that the weight gain may be
correlated with an increase in subcutaneous adipose tissue and a
concomitant decrease in visceral fat [77· 79J. Due to the
deleterious effects of visceral adipose tissue on insulin
resistance and pro-inflammatory states, this change in fat
distribution is generally considered as beneficial despite an
overall incn:ase in body fat mass [80]. A decrease in leptin
levels and an increase in appetite have been seen with
troglitazone treatment [8\], but it is not clear whether the
weight gain associated with rosiglitazone or pioglitazone can be
attributed to this effect.

The main question regarding TZD-induced body weight
gain is whether enhanced adipogenesis is necessary for the
anti-diabetic effects. It is well known that activation of
PPAR')' provokes differentiation of pre-adipocytes into mature
adipocytes. Furthennore, direct activation of PPAR')' in
mature adipocytes plays an important role in regulating
lipid metabolism by increasing flux of fatty acids from the
circulation and other. peripheral tissues into adipocytes. Thus,
part of the anti-diabetic action of TZDs could be due to adipo­
genesis, limiting the peripheral lipotoxicity that occurs in in­
sulin resistant organs such as skeletal muscles. Alternatively, it
is apparent that TZDs modulate the communication between
adipose tissue, the liver and skeletal muscles. PPAR')' activation
induces adipocyte expression of the potent insulin-sensitizing
factor adiponectin and concommitantly reduces the expression
of several insulin resistance promoting polypeptides such as
resistin, lUi or TNFa. Furthermore, increased fat storage
would be expected to enlarge adipocytes, but TZD treatment
actually lead to smaller subcutaneous adipocytes. Interest­
ingly, recent data suggest that new selective modulators of
PPAR')' are able to dissociate adipogenesis from insulin
sensitizing t:ffects, which is encouraging for the development
of new anti-diabetic compounds with reduced weight gain

rz7l-
4.3. Pro-carcinogenic effects ofPPARy

The effe(:t of PPAR ligands on carcinogenesis is controver­
sial. There are a number ofpreclinical in vivo studies suggesting
that ligand activation of PPAR can potentiate tumorigenesis.
The data are not equivocal and depend on numerous parameters
such as the PPAR subtype, the animal model (rodent, non­
rodent, non--human primate) and the cancer type (liver, colo­
rectal, urinary tract, etc.). Further complicating this carcinogen-

esis issue is the fact that PPAR ligands often show anti­
proliferation properties in large numbers of in vitro models [82].
The high prevalence of positive carcinogenicity findings with
the PPAR agonists raises significant safety concerns for long­
term clinical use. Therefore, before clinical trials can be
conducted with compounds of this class, a 2-year rodent
carcinogenicity study is required by the FDA.

Numerous studies have suggested that PPAR')' or dual
PPARal')' activation can potentiate tumorigenesis [83-87].
Whether or not these effects are receptor-dependent or
-independent remain unclear. A review of the 2-year rodent
carcinogenicity study data provided to the FDA for II PPAR
agonists (5 ')' agonists and 6 dual al')' agonists) has revealed that
these compounds are multi-species and multi-sex carcinogens
(El Hage, 2004-www.fda.gov/cder/present/DIA2004/Elhage.
ppt). Thus, tumor types observed in rodents treated with
PPAR agonists include: (A) transitional cell carcinomas of the
urothelium obtained with 5 of the 6 dual PPARal')' agonists and
pioglitazone in all strains of rats (Sprague-Dawley, Fisher,
Wistar), (B) hemangiosarcomas obtained with 8 ofthe 11 tested
agonists (4 PPAR')' agonists and 4 dual PPARal')' agonists) in
mice (CD-l and B6C3F I) and hamsters (1 dual PPARal
')' agonist), (C) lipo-sarcomas observed in rats with 3 PPAR')'
agonists and 3 dual PPARal')' agonists and (D) sarcomatous
tumors at multiple sites (muscle, skin, stomach, uterus and renal
tubules) in rats or mice with dual PPARal')' agonists (EI Hage,
2004). Mechanistic data to explain the mode of action involved
in tumor development are still lacking.

Although it is possible that PPAR ligand-induced heman­
giosarcoma only occurs in mice, studies are ongoing to better
understand the mode of action. Based on the fact that the
spectrum of tumor sites for PPAR-induced hemangiosarcomas
overlaps with the location of extramedullary hematopoiesis,
that PPAR')' induces adiposity in bone marrow and that many
tumors occur in the same animal species, the hypothesis is
that bone marrow-derived cells, recently shown to play a
critical role in tumor angiogenesis [88,89], may also play a
role in the origin of hemangiosarcoma. Moreover, TZDs may
increase neoangiogenesis by their action on endothelial
progenitor cells (proliferation and augmentation of EPC
functional capacity, prevention of apoptosis) [90] which
may favor hemangiosarcoma fonnation. Recently, induced
expression of the transcription factor Egr-l, phosphorylation
of the transcription factor c-lun and phosphorylation of the
ribosomal S-protein have been suggested as a possible
mechanism for the carcinogenic effect of MK-767 in rodents
[911·

Regarding pioglitazone, ragaglitazar or muraglitazar-induced
urothelial carcinogenesis, cellular hypertrophy is an early and
primary change in the bladder urothelium [92], but no data are
available to demonstrate whether it is a PPAR-dependent event.
Another potential hypothesis implicates changes of urine
composition resulting in the production of cytotoxic urinary
solids that would induce regenerative proliferation and
ultimately tumors. This effect, primarily observed in rats (not
in mice), is much less likely to occur in primates, including
humans [93].
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From il conservative point of view, the human relevance of
the tumor findings obtained in animal studies cannot be
definitely ruled out since the tumors are observed in tissues
which express PPAR receptors and since the tumor-induction
potency appears to be correlated with PPAR agonist potency.
Nevertheless it is noteworthy that even in rodents, the pro­
carcinogenic effects of PPAR-y as well as dual PPARa/-y are
species-specific. Furthermore, although TZDs have been on the
market for only a limited time, pioglitazone and rosiglitazone
have now been prescribed to millions of patients in the US
without any major alert regarding potential risk of carcinogeni­
city in humans. There is no evidence of any change in the
number of malignant neoplasms in the longest clinical trials
published to date: the PROactive and DREAM studies.

4.4. Other toxicological effects ojPPAR-y

4.4.1. Hepatotoxicity
As mentioned earlier, several clinical reports demonstrated

liver toxicity in humans treated with troglitazone [94-96],
often associated with significant elevations in serum alanine
aminotransferase (ALT) [31]. Troglitazone appears to be the
only thiazolidinedione which induces liver toxicity when
compared to rosiglitazone and pioglitazone [31]. The mechan­
ism of troglitazone-induced liver toxicity is poorly understood
and may be PPAR-y independent, especially considering that
under normal circumstances, PPAR-y is not expressed at
functional levels in the liver.

4.4.2. Reproductive and developmental toxicity
The PPAR-y receptor has been demonstrated to be essential

for placental development since its disruption in rodents leads to
embryo lethality [97,98]. As a consequence, it is expected that
its activation during pregnancy could have effects on embryo
development. The published reports on the potential develop­
mental or reproductive toxicity induced by PPAR-y ligands are
rare. Animals studies performed with rosiglitazone and
pioglitazone have shown no sign of altered development and
the few analysis carried out in humans are consistent with these
observations [99.100].

S. Potential adverse effects mediated by PPARa

To date, the best studied PPARa ligands are of the fibrate
class (fenofibrate, gemfibrozil, bezafibrate, clofibrate, etc.).
Fibrates have been used therapeutically for more than 30 years,
and are well established effective agents for managing
dyslipidernia, in particular elevated concentrations oftriglycer­
ide-rich lipoproteins (VLDL and VLDL remnants) and low
levels of HDL-C that are typically associated with the mixed
dyslipidemia characteristic of type 2 diabetes and the metabolic
syndrome. Furthermore, their usefulness in the management of
patients at risk for cardiovascular disease is further supported by
several longitudinal clinical studies both in primary and
secondary intervention settings (WHO, HHS, VA-HIT, BIP
and FIELD). They are generally considered as safe drugs with
only few side effects. Nevertheless, some adverse effects might

be related to PPARa activation in humans including rare cases
of myopathy and rhabdomyolysis, increase in creatinine and
homocysteine, lithogenicity and gastro intestinal complaints. To
date, no fibrate or other specific PPARa agonist has been
withdrawn from the market or interrupted at late stage of
development due to any of these side effects. However, such
safety issues may become relevant when developing more
potent PPARa agonists. Recently, the development of the dual
PPARa/-y agonist tesaglitazar was suspended due to an
unexpected increase in plasma creatinine levels.

5.1. Muscle toxicity and rhabdomyolysis

When used as monotherapy, fibrates including gemfibro­
zil [101-104j, fenofibrate [105-108], clofibrate [109-11 Ij,
ciprofibrate [112], and bezafibrate 1112-114] may be
associated with cases of muscle weakness and pain (myo­
pathy) and extremely rare cases of rhabdomyolysis have also
been reported [115]. Clinical signs of muscular toxicity
parallel with increased serum creatinine phosphokinase
(CPK) and histological studies show scattered muscle fiber
necrosis [1161. It is noteworthy that, even used as mono­
therapy, all the fibrates would not have the same propensity to
induce muscular toxicity in humans. The mechanism under­
lying fibrate-induced myopathy or rhabdomyolysis is still not
well understood, and it is conceivable that the difference
observed between fibrates results from their differential
potencies in triggering the toxic mechanism. Fibrate-induced
myotoxicity might rely on direct effects of PPARa activation
in skeletal muscles, indirect effects resulting from exacerbated
pharmacological activity or to PPARa independent effects.
According to a PPARa dependent mechanism, it has been
shown that severe myopathy in mice correlates with an
increased expression of lipoprotein lipase, a well known
PPARa target gene in skeletal muscle [117]. Similarly,
Motojima et al. proposed that PPARa-mediated induction of
pyruvate dehydrogenase kinase, isoenzyme 4 (PDK4) in the
skeletal muscle and reduction of serum triglyceride levels as
major energy source could cause protein degradation in
muscles, leading to myopathy and ultimately to rhabdomyo­
lysis [118,119]. Besides the mechanistic hypothesis, it has also
been suggested that the differences in the propensity offibrates
to induce muscle toxicity could be related to the pharmaco­
kinetic properties of each individual drug and that liver and
kidney impairment are generally considered as important
additional risk factors [120J. Whether of not PPARa is
involved in fibrate-induced myopathy or rhabdomyolysis, it is
important to keep in mind that the risk of myopathy associated
with fibrate treatment is extremely rare (6 cases out of 10 000
patients [121] and no cases reported in the 10 000 patient
cohort of the FIELD trial [7]), and to date, no fibrate or other
new PPARa agonist has been withdrawn from the market or
discontinued at late stages of development due to muscle
toxicity.

In clinical practice, risk of myopathy and rhabdomyolysis
may be increased when fibrates are prescribed as adjunct
therapy in patients receiving statins [20 I]. Notably, in a post
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marketing survey, cases of fatal rhabdomyolysis have been
associated with co-prescriptions of gemfibrozil with cerivas­
tatin [122] contributing to the withdrawal of cerivastatin from
the market. Once again, clear differences can be observed
between fibrates when used as adjunct therapy. Evaluating the
differences in the rate of myotoxicity between the use of
fenofibrate and gemfibrozil' in combination with statins from
the pharmacovigilance data collected by the FDA, Davidson
and Jones reported that the use of fenofibrate in combination
with a statin resulted in fewer reports of rhabdomyolysis than
does the use of gemfibrozil [123]. This difference may be
explained by the ability of gemfibrozil to interfere with the
metabolism of certain statins. Indeed, it has been shown that
gemfibrozil inhibits statin glucuronidation while fenofibrate
does not [124].

5.2. Increase ofplasma creatinine

In humans, a moderate and reversible rise in plasma
creatinine It:vels is a common side effect of fibrates. This
increased creatininemia has been reported in studies performed
with fenofibrate r125-1271, bezafibrate [126,1 28J and ciprofi­
brate [125,129]. The increased creatinine levels were observed
in patients with normal as well as in those with impaired basal
renal function, and in renal transplanted as well as in non­
transplanted patients. The ability of gemfibrozil to increase
creatininemia is extensively debated [130,131] and for some
authors, gemfibrozil would present a better safety profile
relative to fenofibrate or clofibrate in this respect [125,129]. It is
unknown whether the effect on plasma creatinine results from a
PPARo:-re1ated or unrelated effect. Several hypotheses have
been proposed regarding the mechanism underlying fibrate­
induced increase in serum creatinine. In their study, Broeders et
al. reported a parallel increase in plasma urea leading to the
hypothesis that the rise in creatininemia reflected an alteration
of renal function [125]. Although direct evidence for a decrease
in glomerular filtration rate upon fibrate therapy is still lacking,
some autho:rs propose that an altered renal function might
be related to a PPARo:-mediated down-regulation of cydo­
oxygenase (COX-2) in the kidneys [132J and resulting
decreased synthesis of vasodilating prostaglandins [133J. In
support of this hypothesis, clofibrate and ciprofibrate, but not
gemfibrozil inhibited the production of vasodilatory prosta­
glandins [1J2.134J. Recently, the development of the dual
PPARo:/-y tesaglitazar has been discontinued presumably
because the clinical trials showed elevations in serum creatinine
and an assoc;iated decrease in glomerular filtration rate (http://
www.astrazeneca.com!pressrelease - May 4 2006). For Lips­
combe et aI., the most plausible mechanism of the increase in
serum creatinine is based on changes of renal hemodynamics.
They propose that fibrates would induce natriuresis, leading to
volume depletion and subsequently to increased urea and
creatinine levels [130.135]. If true, the dual PPARo:/-y agonist
approach could be of great interest since the increase of sodium
retention induced by PPAR-y activation would counteract the
diuretic effect mediated via PPARo:. The hypothesis of
Lipscombe was however challenged by Tsimihodimos et al.

who argue that if this mechanism would be real, a dispropor­
tionate increase in serum urea compared to serum creatinine
would be expected I: 136] which has not been observed in most
of the published studies [125,129]. Finally, the most recent
reports suggest that fibrate-induced increase in serum creatinine
does not reflect a deterioration in renal function since other
more precise estimators of GFR remain unaffected r137.1381.
The authors of these studies proposed that fibrate raise
creatininemia by increasing net daily production of creatinine,
presumably from muscle origin [138].

Although the role ofPPARo: activation in the mechanism of
tibrate-induced rise in creatininemia remains to be clearly
understood, the potential deleterious effects of some, but not aU,
tibrates on renal function suggest that their clinical use in
patients at risk for renal insufficiency has to be carefully
considered [133,139,1~Ol. Nevertheless, considering the bene­
fit/risk ratio, medical authorities recommend frequent assess­
ment of plasma urea and creatinine levels in normal patients on
tibrate treatment [ 125, 1261.

5.3. Increase ofplasma homocysteine

Besides their effects on lipids, fenofibrate, ciprofibrate and
bezafibrate consistently increase plasma homocysteine concen­
trations in dyslipidemic and diabetic patients [14J --1451- There
is some debate as to whether or not gemfibrozil increases
homocysteinemia. In the secondary prevention VA-HIT study,
gemfibrozil-treated patients exhibited an elevated homocysteine
level vs. placebo [\ 46]. Conversely, other authors claim that
gemfibrozil is the only fibrate that does not induce this adverse
effect [142]. At present, the underlying mechanism of fibrate­
induced elevation of plasma homocysteine has not been
extensively studied and no clear hypothesis has been provided.
According to Dierkes et al., the most likely explanation for this
increase in plasma homocysteine in humans would be an
alteration ofcreatine-creatinine metabolism [1471. Moreover, it
is not clear whether this hyperhomocysteinemia is also
dependent on folate status or renal function [147]. Numerous
studies have reported that administration offolic acid alone or in
combination with vitamins Bl2 and B6 generally normalize
homocysteine levels in patients with hyper-homocysteinemia
[148,-154]. In contrast, co-administration of vitamins did not
totally prevent the rise in plasma homocysteine provoked by
fenofibrate [155--158], although the increase was significantly
lower than that observed in patients treated with fenofibrate
alone. Whatever the exact mechanism, and although there might
be differences between various tibrates in increasing homo­
cysteinemia in humans, the role ofPPARo: activation inthis side
effect is supported by an animal study performed in PPARo:­
deficient mice. In this study, the fenofibrate-induced increase in
homocysteine observed in wild-type mice was not seen in
PPARo:-deficient mice [159J.

Considering the efficacy/safety ratio of fibrates, it is
important to note that the pathological significance of hyper­
homocysteinemia remains a matter of discussion. According to
a number of retrospective and prospective studies, hyperho­
mocysteinemia is consistently associated with an increased
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risk of myocardial infarction, stroke and venous thromboem­
bolism [160 -162]. From a mechanistic point of view, this
hypothesis is supported by a recent study demonstrating that
plasma homocysteine could be pro-atherogenic through an
inhibition of the reverse cholesterol transport process due to a
decrease in plasma HDL. This effect of homocysteine on HDL
particles could result from both an inhibition of ApoAI
synthesis, an increased HDL clearance r16J] and an increased
expression of Cyp7al [1641, However, in contrast, no
prospective study to date has demonstrated that the reduction
of plasma homocysteine by vitamin supplementation reduces
the risk of developing major cardiovascular events. Very
recently, the WAFACS study (Women's antioxidant and Folic
Acid Cardiovascular Study) has shown no benefit offolic acid
and B vitamins in high risk primary and secondary prevention
of cardiovascular events I. IIJ. Furthermore, the DAIS clinical
trial (Diabetes Atherosclerosis Intervention Study) revealed
that the fenofibrate-mediated increase in homocysteine levels
did not attenuate the beneficial effect of fenofibrate on the
prevention of atherosclerosis in diabetic patients. Therefore,
whether hyperhomocysteinemia is a true cardiovascular risk
factor or a marker of an existing cardiovascular disease
remains debatable.

Interestingly, although hyperhomocysteinemia has been
implicated as a causative factor in intimal hyperplasia
development [165--167], PPAR-y ligands have been described
to reduce serum homocysteine levels in rodents and the
associated intimal hyperplasia [168~ 170]. Consequently,
because of the opposing actions of PPARo: versus PPAR-y
agonists on homocysteine and intimal hyperplasia, the devel­
opment ofbalanced dual PPARa!-y agonists may, once again, be
of interest.

5.4. Lithogenicity

Humans treated with a PPARo: agonist including clofibrate,
bezafibrate or fenofibrate showed an increased risk for
cholelithiasis (increase of cholesterol gallstones) [17 U 72].
By contrast, gemfibrozil appears less lithogenic compared to
bezafibrate or clofibrate [173]. A possible mechanism under­
lying fibrate-induced lithogenicity could be the increased biliary
output of cholesterol and the reduction of bile acid production
via the PPARa-mediated downregulation of cholesterol 7alpha­
hydroxylase (Cyp7a) and sterol 27-hydroxylase [174]. The
involvement of PPARo: activation in increased Iithogenicity is
suggested by the finding in mice that reduced bile output
induced by ciprofibrate and bezafibrate requires a functional
PPARo: [174.175]. However, based on the relative ability of
different PPARa ligands to cause cholelithiasis, other mechan­
isms contributing to this effect cannot be excluded.

5.5. Preclinical safety issues ofPPARa. agonists

5.5.1. Cardiac toxicity
The results of the VA-HIT and FIELD trials support the use

of fibrate. in the prevention of major cardiovascular events in
type 2 diabetic patients. In the largest prospective study

(FIELD) conducted in type 2 diabetes, although fenofibrate
did not significantly reduce coronary heart disease mortality, a
24% reduction in risk of non-fatal myocardial infarction was
observed. This was associated with a significant 21 % reduction
in the number ofcoronary revascularization procedures. Finally,
a subgroup analysis showed that fenofibrate significantly
reduced the total number of cardiovascular diseases in the
primary prevention group but not in the secondary prevention
group. The VA-HIT (Veterans Affairs HDL Intervention Trial)
reported a 22% cardiac event reduction as well as a significant
reduction in strokes, Despite these clinical results, it has been
suggested that activation of PPARa could modify cardiac
metabolism in a way that might be deleterious in patients with
diabetic heart failure [176]. Accordingly, in animals, modula­
tion ofPPARa expression in the heart suggested a negative role
of PPARa in the development of cardiomyopathy, due to a
probable shift from glucose oxidation to fatty acid oxidation
[177,178]. However, the importance of PPARa-induced beta­
oxidation of free fatty acids as a potential cardiotoxicity
mechanism is still controversial since it has been shown that
PPARo: activation by ciprotibrate did not induce any significant
beta-oxidation in the heart [179], whereas other authors
demonstrated that treatment with a strong PPARo: agonist
induced cardiornyocyte apoptosis preceded by enhanced
myocardial beta-oxidation [180]. On the contrary, in diabetic
models, treatment with a PPARo: agonist does not aggravate the
cardiac phenotype and may even reduce myocardial fatty acid
oxidation [181]. Finally, when used as preventive treatments
before ischemia/reperfusion injury in rodent models, PPARa
agonists are cardioprotective, possibly due to their anti­
inflammatory properties although other protective mechanisms
may also be involved [182,1831.

In conclusion, the tibrate class of drugs is rather cardiopro­
tective. Nevertheless, it is noteworthy that results from clinical
trials suggest differences between fenofibrate and gemtibrozil in
the prevention of cardiovascular events, which may be related to
their differential activities as selective PPARa modulators (see
Table 2).

5.5.2. Hepatotoxicity and liver cancer in rodents
When administrated to rodents, tibrates produce a liver­

specific response resulting in peroxisomal proliferation,
hepatomegaly and ultimately hepatocellular carcinoma
[184]. This effect has been demonstrated to be mediated by
PPARa [175,185, 186J. The magnitude of this response
appears to vary considerably among species. In non-human
primates and humans, PPARa agonists did not induce
peroxisome proliferation nor the development of liver cancer
[185.187]. In agreement, tibrates have been extensively
prescribed for more than 30 years and an increased risk of
liver cancer has never been reported in humans.

5.5.3. PPARa. and other cancers
Some studies in rats have reported that alteration ofPPARo:

expression and/or PPARa activation could induce carcinogen­
esis in other organs than liver (testis (Leydig cells), pancreas)
[188J. These Leydig cell and pancreatic acinar cell tumors have
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only been observed in rats but not in mice. Hypothetical
mechanisms have been proposed which implicate PPARa
ligand-induced Leydig cell and pancreatic acinar cell tumors via
a PPARa-dependent pathway, but this has not been clearly
demonstrated to date and the human relevance of these tumor
responses are uncertain [188].

5.5.4. Reproductive and developmental toxicity
There are a limited number of studies which described

reproductive or developmental toxicity of fibrates. It has been
shown that administration of clofibrate or gemfibrozil to rats
and mice during pregnancy could cause atypical changes in
maternal and fetal liver that seem to be related to the rodent
specific PPARo:-induced phenomenon of peroxisome prolifera­
tion [189-191]. The dose required to cause these effects is
considerably higher than those used therapeutically, and no
evidence of overt fibrate-induced teratogenesis have been found
[189,192,1931·

6. PPAR~/li potential adverse effects

While numerous studies have been performed to examine the
effects ofPPARo: and PPAR'Y activation by specific ligands, the
role ofthe third member of the PPAR family, PPAR~/o, has not
been extensively investigated until recently. As a consequence,
less is known about the potential safety issues that could be
associated to the use of PPAR~/o-specificligands. Conflicting
results have been published regarding the role of PPAR~/o in
carcinogenesis. Intestinal tumorigenesis, but not colon carcino­
genesis, is reported to incre\lse in response to GW501516 in a
genetically modified animal model [194]. However, other
reports suggest that ligand activation of PPAR~/o will inhibit
colon carcinogenesis [195-197J.

7. The future: selective PPAR modulators (SPPARMs)

PPAR agonists remain interesting drugs for the treatment of
the risk factors associated with the metabolic syndrome and the
prevention of type 2 diabetes, but they display certain side
effects which limit their clinical development and therapeutic
use. Current strategies aim at reducing side effects by
identifying selective PPAR modulators (SPPARMs) and the
optimization of the selectivity ratio between the different PPAR
isoforms. These approaches should allow selection of new
PPAR agonists with improved efficacy and/or safety profiles.
An ideal selective PPAR modulator should result in the
differential regulation of genes leading to beneficial effects on
glucose and lipid homeostasis, without negative side effects.
Although not unequivocally demonstrated, it is likely that the
adverse effects result from high doses offull agonists, therefore
partial PPAR agonism may be another approach to create an
improved therapeutic window. Metaglidasen is the first insulin
sensitizer, claimed to be a SPPARM, that is currently in phase
III clinical trial. In June 2005, results from the phase II clinical
trial were pr,esented at the 65th ADA scientific sessions in San
Diego showing that metaglidasen significantly improved
metabolic parameters without the side effects of fluid

retention/edema or weight gain. Other SPPARM molecules
are currently in development including nTZDpa [27],
SPPARMl2 [28] and the T13I molecule (Amgen (Tularik»,
and new SPPARMs are being increasingly synthesized. It is
clear that the development of modulators which attain efficient
therapeutic activity without PPAR related side effects will be
important to fulfill unmet clinical needs in the treatment of
metabolic disorders.

8. Conclusion

Numerous failures have questioned the feasibility of further
PPAR agonist development for the treatment of metabolic
disorders. This review has summarized the side effects
associated with the clinical use of current PPAR agonists and
suggests that the selective PPAR modulator concept is a
valuable approach to develop new efficient PPAR agonists with
limited side effects.
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